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Abstract. In this article, we explore the exterior penalty fuzzy valued function method for Fuzzy Nonlinear

Programming Problems (FNLPP). We present methods of penalty fuzzy valued function for solving constrained
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to represent the problem’s decision variables and coefficients. Using a new fuzzy arithmetic and fuzzy ranking
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present a numerical example of the suggested method and compare the results to those produced by existing
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1 Introduction

Traditional optimization techniques have been used successfully for many years. Due to many
reasons, real world problems involves uncertainties and inexactness. Hence to formulate and
to solve real world problems, the traditional mathematical tools are inefficient. Zadeh (1965)
introduced the concept of fuzzy set and it plays a crucial role in solving the real world problems.
There after, Bellman et al. (1970) have discussed the concept of decision making in fuzzy nature.
Zimmermann (2001) discussed fuzzy set theory and its applications. There are several fuzzy
nonlinear production planning and scheduling issues in many real-world situations, such as in
industrial planning. Due to the existence of inaccurate information, research on optimization
and modeling for nonlinear programming in fuzzy environment is crucial for the development
of fuzzy optimization theory and having a wide range of applications to a variety of practical
conflicts in the real world.
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Akrami et al. (2016) focused on solving fuzzy nonlinear optimization problems. They treated
all coefficients in the objective function and constraints as fuzzy numbers. They transformed
the fuzzy problem into a crisp form using α-cuts. This crisp form becomes an interval nonlinear
programming problem, which no longer requires the use of membership functions for solving and
obtained the interval solution. Al-Naemi (2022) discussed about a new parameter βGhk based on
the memoryless self-scale DFP QN method in this article. Any line search will suffice to ensure
adequate descent property, and also demonstrated that the Zoutendijk condition holds and that
the method is globally convergent by using some step-length technique. Behera and Nayak (2012)
provided an improved solution to the issues of fuzzy nonlinear programming problems (FNLPP)
with linear constraints. They used the Langrangian method and KKT conditions. Cheng (2018)
developed an exact and smooth penalty function to transform nonlinear programming problems
into unconstrained optimization models. The results indicate that this new penalty function is
a reasonable and effective approach for solving a certain class of NLPP.

Cui et al. (2017) provided unconstrained and constrained optimization problems with a focus
on communications, networking, and signal processing. Eiselt and Sandblom (2022) treated non-
linear programming as a generalization of linear programming. Another important distinction
between linear and nonlinear programming is that in nonlinear programming, constraints are
not necessarily needed to ensure finite optimal as in the case of linear programming. Hassan and
Baharum (2019) introduced a new penalty function known as the logarithmic penalty function
(LPF) and assesses how well the LPF method converges, and a new penalty function method
which transformed non-linear constrained optimization with equality constraints into an uncon-
strained optimization problem. Jameel and Radhi (2014) developed penalty function method
and mixed with Nelder and Mend’s algorithm of direct optimization problem to solve FNLPP.
Jayswal and Arana-Jimenez (2022) presented their findings on optimizing control problems in-
volving first-order partial differential equations and data uncertainty, known as MCOPU. They
derived the robust sufficient optimality conditions for (MCOPU) under the convexity hypotheses
and then modulate the unconstrained control problem via the absolute value penalty function
method and establish the equivalence between the robust solutions set of the constrained and
unconstrained control problems.

Kemal (2017) discussed interior and exterior penalty methods for finding optimal solutions of
nonlinear optimization problems by reducing to unconstrained optimization problems. Lavezzi
et al. (2022) proposed a set of guidelines to select a solver for the solution of nonlinear program-
ming problems, and comparison of the convergence performances of commonly used solvers for
both unconstrained and constrained nonlinear programming problems. Lu and Mei (2023) stud-
ied a type of bi-level optimization problem that includes both unconstrained and constrained
optimization. In these problems, the lower-level portion is a convex optimization problem, while
the upper-level part may involve non-convex optimization. Then they developed penalty meth-
ods for solving them, whose subproblems turn out to be a structured minimax problem and are
suitably solved by a first-order method developed. Micheal et al. (2021) proposed a method in
such a way that mixed (involving equality and inequality) constraint problems can be solved
efficiently by the exterior penalty function (EPF) method and robustly and also its performance
(in terms of convergence rate and accuracy) is compared with the standard ensemble-based
optimization (EnOpt) method. Na et al. (2023) developed an active-set stochastic sequential
quadratic programming (StoSQP) algorithm that utilizes a differentiable exact augmented La-
grangian as the merit function. The algorithm adaptively selects the penalty parameters of the
augmented Lagrangian, and performs a stochastic line search to decide the step size.

Nagoorgani and Sudha (2019) discussed optimality conditions for fuzzy non-linear uncon-
strained minimization problems. The cost coefficients are represented by triangular fuzzy num-
bers and presented some numerical examples. Panigrahi et al. (2022) have converted the fuzzy
nonlinear system of equations into an unconstrained fuzzy multivariable optimization problem
with preserving the operating constraints. They developed a fuzzy inner-outer direct search
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method and obtained uncertain solutions. Salman (2021) introduced penalty function methods
for solving optimization problems with constraints. The methods they discussed aim to trans-
form a constrained optimization problem into an unconstrained one. After this transformation,
they apply standard search techniques like the exterior penalty function method and the interior
penalty method to find solutions. Sharma et al. (2021, 2022) have introduced a new approach
for addressing multi-objective aspirational level fractional transportation problems involving
fuzzy parameters. They also proposed a Fermatean fuzzy ranking function in optimization of
intuitionistic fuzzy transportation problems.

Uma Maheswari and Ganesan (2019) proposed a fuzzy version of the Kuhn-Tucker condition
for fully fuzzy nonlinear programming problems and found their optimal fuzzy solutions. They
used the Gradient method (also known as the Steepest Descent Method of Cauchy) to con-
vert it into an unconstrained multi-variable fuzzy optimization problem. Vanaja and Ganesan
(2024) proposed an interior fuzzy penalty function method for solving fuzzy nonlinear program-
ming problems. Wang and Zhu (2016) proposed conjugate gradient path method for solving
derivative-free unconstrained optimization. The iterative direction is obtained by constructing
and solving quadratic interpolation model of the objective function with conjugate gradient
methods. Yamakawa et al. (2023) discussed a new nonlinear optimization model to solve semi
definite optimization problems (SDPs), providing some properties related to local optimal so-
lutions. Yuan et al. (2023) proposed a two-phase constraint-handling technique is integrated
into the evolutionary algorithms to solve constrained optimization problems (called TPDE). A
constrained optimization EAs (COEA) based on the two-phase CHT (TPDE), which consists of
the exploration phase and exploitation phase, and the EPM and IPM are utilized for selection.

Zangwill (1967) introduced Non-Linear Programming Via Penalty Functions. The main
contribution of this research paper is as follows: Most of the authors‘ have transformed the
fuzzy nonlinear programming problems into one or more equivalent crisp nonlinear programming
problems and obtained the crisp solution. By using a new fuzzy arithmetic and ranking on
the parametric form of the triangular fuzzy numbers and by using the exterior penalty fuzzy
valued functions method, we obtain the fuzzy optimal solution of the given fuzzy nonlinear
programming problems without converting to its‘ equivalent crisp form. We prove a lemma and
a convergence theorem for the exterior penalty fuzzy valued functions method. A numerical
example is provided to show the efficacy of the proposed method and the results are compared
with the existing ones‘. We discuss a real world application of fuzzy nonlinear programming
problems in advertising sector. The results of the methods are shown graphically.

2 Preliminaries

Definition 1. A fuzzy number M̃ is a fuzzy set on R whose membership function M̃ : R→ [0, 1]
has the following characteristics:

1. M̃(y) is convex, i.e., M̃(λy1 + (1 − λ)y2) ≥ min{M̃(y1), M̃(y2)}, λ ∈ [0, 1], for all
y1, y2 ∈ R.

2. M̃ is normal, i.e., there exists an y ∈ R such that M̃(y) = 1

3. M̃ is upper semi-continuous.

4. sup(M̃) is bounded in R.

We use the notation F (R) to denote the set of all fuzzy numbers defined on R.

Definition 2. A triangular fuzzy number (TFN) M̃ is a fuzzy number M̃ on R whose member-
ship function M̃ : R→ [0, 1] has the following characteristics:
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M̃(y) =


y −m1

m2 −m1
, m1 ≤ y ≤ m2

m3 − y
m3 −m2

, m2 ≤ y ≤ m3

0, elsewhere

We denote this triangular fuzzy number by M̃ = (m1,m2,m3).

Definition 3. A fuzzy number M̃ can also be represented as a pair (m; m) of functions
m(β), m(β), 0 ≤ β ≤ 1 which satisfy the following requirements:

1. m(β) is a bounded monotonic increasing left continuous function.

2. m(β) is a bounded monotonic decreasing left continuous function.

3. m(β) ≤ m(β), 0 ≤ β ≤ 1.

Definition 4. (Parametric Form)
Let M̃ = (m1,m2,m3) be a triangular fuzzy number and m(β) = m1 + (m2 −m1)β, m(β) =
m3− (m3−m2)β, β ∈ [0, 1]. The parametric form of the TFN is defined as M̃ = (m0,m∗,m

∗),
where m∗ = m0−m and m∗ = m−m0 are the left and right fuzziness index functions respectively.

The number m0 =

(
m(1) +m(1)

2

)
is called the location index number. When β = 1, we get

m0 = m2.

2.1 Arithmetic Operations on Fuzzy Numbers

Ma et al. (1999) have expressed all the fuzzy numbers in their parametric form, i.e. in the
form of location index and fuzziness index functions. They proposed a new fuzzy arithmetic
operation on which the location index number follows the usual arithmetic and the fuzziness
index functions are following the lattice rule which is least upper bound and greatest lower bound
in the lattice L. That is for m,n ∈ L, m ∨ n = max{m,n} and m ∧ n = min{m,n}. For any
two fuzzy numbers M̃ = (m0,m∗,m

∗), Ñ = (n0, n∗, n
∗) and ∗ ∈ {+,−,×,÷}, the arithmetic

operations are defined as

M̃ ∗ Ñ =(m0,m∗,m
∗) ∗ (n0, n∗, n

∗) = (m0 ∗ n0,m∗ ∨ n∗,m∗ ∨ n∗)
=(m0 ∗ n0,max{m∗, n∗},max{m∗, n∗})

In particular for M̃ = (m0,m∗,m
∗) and Ñ = (n0, n∗, n

∗) in F (R), we have

1. Addition :M̃ + Ñ = (m0,m∗,m
∗) + (n0, n∗, n

∗) = (m0 + n0,max{m∗, n∗},max{m∗, n∗})

2. Subtraction :M̃−Ñ = (m0,m∗,m
∗)−(n0, n∗, n

∗) = (m0 − n0,max{m∗, n∗},max{m∗, n∗})

3. Multiplication :M̃×Ñ = (m0,m∗,m
∗)×(n0, n∗, n

∗) = (m0 × n0,max{m∗, n∗},max{m∗, n∗})

4. Division :M̃ ÷ Ñ = (m0,m∗,m
∗) ÷ (n0, n∗, n

∗) = (m0 ÷ n0,max{m∗, n∗},max{m∗, n∗}),
provided n0 6= 0.

2.2 Ranking of Fuzzy Numbers

Ranking of fuzzy numbers plays a major role in decision making process under fuzzy environ-
ment. Different types of ranking methods suggested by several authors are available in the
literature. In this article, we use an efficient ranking method based on the graded mean.

For M̃ = (m0,m∗,m
∗) ∈ F (R), define R : F (R)→ R by R(M̃) =

(
m∗ + 4m0 +m∗

6

)
.

For any two triangular fuzzy numbers M̃ = (m0,m∗,m
∗) and Ñ = (n0, n∗, n

∗) in F (R), we
have the following comparison:
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• If R(M̃) < R(Ñ), then M̃ ≺ Ñ

• If R(M̃) > R(Ñ), then M̃ � Ñ

• If R(M̃) = R(Ñ), then M̃ ≈ Ñ .

3 Fuzzy Non Linear Programming Problems (FNLPP)

Consider a general fuzzy nonlinear programming problem

minf̃(y)

subject to h̃i(y) ≈ 0̃ for i = 1, 2, · · · , l
g̃i(y) � 0̃ for j = 1, 2, · · · ,m,
Y � 0̃

(1)

where f̃ , h̃1, · · · , h̃l, g̃1, · · · , g̃m are continuous fuzzy valued functions defined on Rn.
A vector Y = (y1, y2, y3, · · · , yn) is said to be a feasible solution to the FNLPP if it satisfies

the constraints and the non negativity restriction of the FNLPP. The set of all feasible solutions
forms the feasible region and is defined by

Y = {y ∈ Rn/h̃i(y) ≈ 0̃ for i = 1, 2, · · · , l, g̃j(y) � 0̃ for j = 1, 2, · · · ,m and y � 0̃}.

4 Exterior penalty fuzzy valued function methods

Definition 5. A continuous fuzzy valued function P̃ : Rn → F (R) is said to be a penalty fuzzy
valued function if P̃ satisfies:
(i). P̃ (y) ≈ 0̃ if and only if g̃i(y) � 0̃
(ii). P̃ (y) � 0̃ otherwise g̃i(y) � 0̃

Definition 6. Consider a FNLPP with inequality constraints

minf̃(y)

subject to g̃i(y) � 0̃ for i = 1, 2, 3, · · · ,m
Y � 0̃,

(2)

where f̃ , g̃1, · · · , g̃m are continuous fuzzy valued functions defined on Rn.

Exterior penalty fuzzy valued function method uses penalty fuzzy valued function to penalize
the infeasible points but not feasible points. In such methods, every sequence of unconstrained
optimization attains an improved yet infeasible solution. These methods are known as exterior
penalty methods.

The exterior penalty fuzzy valued function method generally use the auxiliary function ψ as,

ψ̃µ(y) = f̃(y, µ) = f̃(y) + µα̃(y) for y ∈ Rn,

where the penalty fuzzy valued function α̃(y) is defined by

α̃(y) =

m∑
i=1

[max{0, g̃j(y)}]p +

l∑
i=1

|h̃i(y)|p, (i.e. p � 0̃) (3)

For a positive integer p and a non-negative penalty parameter µ. If y resides within the feasible
region, then α̃(y) ≈ 0̃ implies no penalty is incurred. Therefore, a penalty is applicable only when
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the point y is not feasible region, i.e., for a point y such that g̃j(y) � 0̃ for some j = 1, 2, · · · ,m
or h̃i(y) 6≈ 0̃ for some i = 1, 2, · · · , l.

ψ̃µ(y) = f̃(y, µ) = f̃(y) + µ

m∑
i=1

[max{0, g̃j(y)}]p

Concerning the auxiliary function, the impact of the second term on the right side is to augment
ψ̃µ(y) in correlation with the pth power of the extent to which the constraints are breached.
Consequently, a penalty is incurred for constraint violations, and the penalty amount escalates
at a greater rate than the extent of constraint violation (for p � 1).
Let’s examine the behavior of ψ̃µ(y) for different values of p.
(i). If p = 0

ψ̃µ(y) = f̃(y, µ) =f̃(y) + µ
m∑
i=1

[max{0, g̃j(y)}]0

= f̃(y) +mµ, for all g̃j(y) � 0̃

= f̃(y), for all g̃j(y) ≺ 0̃

The function exhibits discontinuity at the boundary of the acceptable region, and hence it
will be very difficult to minimize this function.
(ii). If 0 ≤ p ≤ 1
Here the ψ̃-function will be continuous, but the penalty for violating a constraint may be too
small. Additionally, the derivatives of the function exhibit discontinuity along the boundary.
Consequently, it will be hard to minimize the ψ̃-function.
(iii). If p = 1
In this case, under specific constraints, Zangwill (1967) demonstrated that there exists a suffi-
ciently large µ0 such that the minimum of ψ precisely corresponds to the constrained minimum
of the original problem for all µκ ≥ µ0. Nevertheless, the contours of the ψ̃-function posses dis-
continuous first-order derivatives along the boundary. Consequently, despite the convenience of
selecting a single µκ that achieves the constrained minimum in an unconstrained minimization,
the method lacks attractiveness from a computational point of view.
(iv). If p ≥ 1
The first-order derivatives of the ψ̃-function will be continuous, and they are expressed as:

∂ψ̃

∂yi
=
∂f̃

∂yi
+ µκ

m∑
j=1

p[max{0, g̃j(y)}]p−1∂g̃j(y)

∂yi
.

Generally, for the practical computation, the value of p is chosen as 2, and therefore, we will use
p = 2 in the subsequent discussion of the penalty method with.

α̃(y) =
m∑
i=1

[max{0, g̃j(y)}]2

4.1 Convergence of Exterior Penalty Fuzzy Valued Function Methods

Consider a sequence of values µκ with µκ ↑ ∞ as κ → ∞, and let yκ be the minimizer of
f̃µκ(y) = f̃(y) + µκα̃(y) for each κ.

Lemma 1. Suppose that there exist a feasible optimal solution ỹ∗ for FNLPP (2) and let α̃
be a continuous function defined by (3). If for each µκ, there is a minimizer yκ ∈ Y of
f̃µκ(y) = f̃(y) + µκα̃(y), then following properties holds true for 0 < µκ < µκ+1.
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(i). f̃µk(y
κ) � f̃µκ+1(y

κ+1)

(ii). α̃(yκ) � α̃(yκ+1)

(iii). f̃(yκ) � f̃(yκ+1)

(iv). f̃(y∗) � f̃µκ(yκ) � f̃(yκ)

Proof. (i). Since 0 < µk < µk+1 and α̃(y) � 0̃, we get µκα̃(yκ+1) � µκ+1α̃(xκ+1)

Furthermore, since (yκ) minimizes f̃µκ(y) , we have

f̃µκ(yκ) = f̃(yκ) + µκα̃(yκ)

� f̃(yκ+1) + µκα̃(yκ+1)

� f̃(yκ+1) + µκ+1α̃(yκ+1)

≈ f̃µκ+1(y
κ+1)

(4)

⇒ f̃µκ(yκ) � f̃µκ+1(y
κ+1) (5)

(ii). As (yκ+1) minimizes f̃µκ+1(y
κ+1), we have

f̃(yκ+1) + µκ+1α̃(yκ+1) � f̃(yκ) + µκ+1α̃(yκ) (6)

Similarly, as yκ minimizes f̃µκ(y), we have

f̃(yκ) + µκα̃(yκ) � f̃(yκ+1) + µκα̃(yκ+1) (7)

Adding (6) and (7) and simplifying, we get

[µκ+1 − µκ][α̃(yκ)− α̃(yκ+1)] � 0̃.

Since µκ+1 � µκ, we have α̃(yκ)− α̃(yκ+1) � 0̃⇒ α̃(yκ) � α̃(yκ+1).
(iii). From inequality (4) we get

f̃(yκ)− f̃(yκ+1) � µκ[α̃(yκ+1)− α̃(yκ)]. (8)

Since, α̃(yκ+1)− α̃(yκ) � 0̃ and µκ � 0, we have

f̃(yκ)− f̃(yκ+1) � 0̃ ⇒ f̃(yκ) � f̃(yκ+1).

(iv). Suppose that y∗ be an optimum solution, then we have

f̃(yκ) � f̃(yκ) + µκα̃(yκ)

� f̃(y∗) + µκα̃(y∗)

≈ f̃(y∗), since µκα̃(yκ) � 0̃ and α̃(y∗) ≈ 0̃.

Theorem 1. Suppose that there exist a feasible optimal solution ỹ∗ for FNLPP (2) and let α̃ be
a continuous function defined by (3). Furthermore, for each µκ, suppose there exists a solution
yκ ∈ Y that minimizes f̃(y) + µκα̃(y) subject to y ∈ Y , and that yκ is contained in a compact
subset of Y . Then, the limit ȳ of any convergent subsequence of {yκ} is an optimal solution to
the original problem, and µκα̃(yκ)→ 0 as µκ →∞.
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Proof. Let ȳ be a limit point of (yκ). From the continuity of the function involved,

lim
κ→∞

f̃(yκ) = f̃(ȳ)

Also from (iv) of lemma (1), we have

f̃∗µ = lim
κ→∞

f̃µκ(yκ) � f̃(y∗) and lim
κ→∞

f̃(yκ) = f̃(ȳ) � f̃(y∗) (9)

and hence

lim
κ→∞

[f̃µκ(yκ)− f̃(yκ)] = f̃∗µ − f̃(ȳ)

which implies that

lim
κ→∞

µκα̃(yκ) = f̃∗µ − f̃(ȳ) (10)

(by continuity of α̃) which is equivalent to

α̃(ȳ) = lim
κ→∞

1

µκ
[f̃∗µ − f̃(ȳ)] = 0, since f̃∗µ − f̃(ȳ) is constant and

1

µκ
→ 0 as κ→∞.

Hence, ȳ is a feasible solution to the original constrained problem. Given that ȳ is feasible and
y∗ is the minimizer of the original constrained problem,

f̃(y∗) � f̃(ȳ) (11)

Hence, from (9) and (11)

f̃(y∗) ≈ f̃(ȳ)

Hence, the sequence (yκ) converges to the optimal solution of the original constrained problem.
From (10), we have limκ→∞ µκα̃(yκ) = f̃∗µ − f̃(ȳ) ≈ 0̃. Thus, µκα̃(yκ)→ 0 as µκ →∞.

This theorem implies that, as µκ → ∞, the optimal solution (yκ) to f̃µκ(y) can be brought
arbitrarily close to the feasible region. Although the optimal solutions (yκ) are typically infeasi-
ble, increasing µκ results in the generated points approaching an optimal solution from outside
the feasible region.

4.2 Algorithm for Exterior Penalty Fuzzy Valued Function Method

Step 1. Assume a growth parameter γ > 1, a stopping parameter (tolerance) ε > 0, and
an initial value µ1. Consider (yκ) as the starting point, violating at least one constraint, and
formulate the objective function f̃µκ(y) for κ = 1, 2, 3, · · · , n.
Step 2. Commencing with (yκ), apply an unconstrained search technique to identify the point
minimizing f̃µκ(y), denoting it as (yκ+1), which then becomes the new starting point.
Step 3. If ‖(yκ+1) − (yκ)‖ < ε, or if the difference between two successive objective function
values is smaller than ε, i.e., | f̃(yκ+1)− f̃(yκ) |≺ ε, then stop with (yκ+1) as an estimate of the
optimal solution. Otherwise, set µκ+1 = γµκ, formulate the new f̃µκ+1(y), put κ = κ + 1, and
return to step 1.

Note: We solve a sequence of problems by progressively increasing the µ values. In other
words, for 0 < µκ < µκ+1, the optimal point (yκ) for the penalized objective function f̃µκ(x),
the sub-problem at the κth iteration becomes the initial point for the subsequent problem, where
κ = 1, 2, 3, · · · , n. To obtain the optimum (yκ), we assume that the penalized function has a
solution for all positive values of µκ.
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5 Numerical Example

Consider a FNLPP discussed by Akrami et al. (2016)

max f̃(ỹ) =(1, 3, 4)ỹ21 + (1, 2, 3)ỹ22

subject to (0, 1, 3)ỹ1 + (2, 3, 5)ỹ2 � (3, 4, 6)

(1, 2, 4)ỹ1 − (0, 1, 2)ỹ2 � (1, 2, 5)

ỹ1, ỹ2 � 0̃.

(12)

Solution: The given maximization FNLPP is converted into and equivalent minimization
FNLPP as

min f̃(ỹ) =− (1, 3, 4)ỹ21 − (1, 2, 3)ỹ22

subject to (0, 1, 3)ỹ1 + (2, 3, 5)ỹ2 − (3, 4, 6) � 0̃

(1, 2, 4)ỹ1 − (0, 1, 2)ỹ2 − (1, 2, 5) � 0̃

ỹ1, ỹ2 � 0̃.

(13)

The parametric form of the given FNLPP (13) is given by

min f̃(ỹ) =− (3, 2− 2β, 1− β)ỹ21 − (2, 1− β, 1− β)ỹ22

subject to g̃(ỹ1) =(1, 1− β, 2− 2β)ỹ1 + (3, 1− β, 2− 2β)ỹ2 − (4, 1− β, 2− 2β) � 0̃

g̃(ỹ2) =(2, 1− β, 2− 2β)ỹ1 − (1, 1− β, 1− β)ỹ2 − (2, 1− β, 3− 3β) � 0̃

ỹ1, ỹ2 � 0̃, β ∈ [0, 1].

Define the penalty function α̃(ỹ) = [max{g̃(ỹ), 0}]2. Thus α̃1(ỹ) ≈ 0̃ and α̃2(ỹ) ≈ 0̃, for g̃(ỹ) � 0̃
and

α̃1(ỹ) = [(1, 1− β, 2− 2β)ỹ1 + (3, 1− β, 2− 2β)ỹ2 − (4, 1− β, 2− 2β)]2,

α̃2(ỹ) = [(2, 1− β, 2− 2β)ỹ1 − (1, 1− β, 1− β)ỹ2 − (2, 1− β, 3− 3β)]2,

for g̃(ỹ) � 0̃.
Then the corresponding unconstrained fuzzy optimization problem is

f̃µκ(ỹ) =− (3, 2− 2β, 1− β)ỹ21 − (2, 1− β, 1− β)ỹ22 + µκα̃1(ỹ) + µκα̃2(ỹ)

Case:1 If α̃1(ỹ) ≈ 0̃ and α̃2(ỹ) ≈ 0̃, for g̃(ỹ) � 0̃, then the optimal solution to

min f̃µκ(ỹ) =− (3, 2− 2β, 1− β)ỹ21 − (2, 1− β, 1− β)ỹ22 + µκα̃1(ỹ) + µκα̃2(ỹ)

is at y∗ = (0, 0) and is infeasible.
Case:2 If α̃1(ỹ) = [(1, 1− β, 2− 2β)ỹ1 + (3, 1− β, 2− 2β)ỹ2 − (4, 1− β, 2− 2β)]2 and
α̃2(ỹ) = [(2, 1− β, 2− 2β)ỹ1 − (1, 1− β, 1− β)ỹ2 − (2, 1− β, 3− 3β)]2, for g̃(ỹ) � 0̃, then

min f̃µκ(ỹ) =− (3, 2− 2β, 1− β)ỹ21 − (2, 1− β, 1− β)ỹ22

+ µκ((1, 1− β, 2− 2β)ỹ1 + (3, 1− β, 2− 2β)ỹ2 − (4, 1− β, 2− 2β))2

+ µκ((2, 1− β, 2− 2β)ỹ1 − (1, 1− β, 1− β)ỹ2 − (2, 1− β, 3− 3β))2

(14)

The necessary condition for ỹ to be optimal for (14) implies 5f̃µκ(ỹ) ≈ 0̃. Hence we have

∂f̃µκ
∂ỹ1

= −(6, 2− 2β, 1− β)ỹ1 + (2, 1− β, 2− 2β)µκ

[(1, 1− β, 2− 2β)ỹ1 + (3, 1− β, 2− 2β)ỹ2 − (4, 1− β, 2− 2β)] + (4, 1− β, 2− 2β)µκ

[(2, 1− β, 2− 2β)ỹ1 − (1, 1− β, 1− β)ỹ2 − (2, 1− β, 3− 3β)] ≈ 0̃.
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∂f̃µκ
∂ỹ2

= −(4, 1− β, 1− β)ỹ2 + (6, 1− β, 2− 2β)µκ

[(1, 1− β, 2− 2β)ỹ1 + (3, 1− β, 2− 2β)ỹ2 − (4, 1− β, 2− 2β)]− (2, 1− β, 1− β)µκ

[(2, 1− β, 2− 2β)ỹ1 − (1, 1− β, 1− β)ỹ2 − (2, 1− β, 3− 3β)] ≈ 0̃.

This implies that,

− (6, 2− 2β, 1− β)ỹ1 + (10, 1− β, 2− 2β)µκỹ1 + (2, 1− β, 2− 2β)µκỹ2 − (16, 1− β, 3− 3β)µκ ≈ 0̃

− (4, 1− β, 1− β)ỹ2 + (2, 1− β, 2− 2β)µκỹ1 + (20, 1− β, 2− 2β)µκỹ2 − (20, 1− β, 3− 3β)µκ ≈ 0̃

(15)

Solving these equations (15), we get,

ỹ1 =
(8, 1− β, 3− 3β)µκ − (1, 1− β, 2− 2β)µκỹ2

(5, 1− β, 2− 2β)µκ − (3, 2− 2β, 1− β)

ỹ2 =
(10, 1− β, 3− 3β)µκ − (1, 1− β, 2− 2β)µκỹ1

(10, 1− β, 2− 2β)µκ − (2, 1− β, 1− β)

ỹκ ≈
{

(70, 1− β, 3− 3β)µ2κ − (16, 1− β, 3− 3β)µκ
(49, 1− β, 2− 2β)µ2κ − (40, 2− 2β, 2− 2β)µκ + (6, 2− 2β, 1− β)

,

(210, 1− β, 3− 3β)µ3κ − (192, 2− 2β, 3− 3β)µ2κ + (30, 2− 2β, 3− 3β)µκ
(245, 1− β, 2− 2β)µ3κ − (249, 2− 2β, 2− 2β)µ2κ + (70, 2− 2β, 2− 2β)µκ − (6, 2− 2β, 1− β)

}
Let µκ+1 = γµκ. Since γ > 1, starting with γ = 10, µ1 = 1 and ỹ1 = (0, 0) and using a tolerance
of 0.0001 (say), we have the following tables (1),(2),(3),(4).

Table 1: Penalty Iteration Table

κ µκ ỹκ1 ỹκ2
1 1 (3.6,2-2β,3-3β) (0.8,2-2β,3-3β)

2 10 (1.51798,2-2β,3-3β) (0.86551,2-2β,3-3β)

3 100 (1.43702,2-2β,3-3β) (0.85801,2-2β,3-3β)

4 1000 (1.42941,2-2β,3-3β) (0.85723,2-2β,3-3β)

5 10000 (1.42866,2-2β,3-3β) (0.85715,2-2β,3-3β)

6 100000 (1.42857,2-2β,3-3β) (0.85714,2-2β,3-3β)

7 1000000 (1.42857,2-2β,3-3β) (0.85714,2-2β,3-3β)

Table 2: Continuation to Table 1

κ g̃1(ỹ
κ) g̃2(ỹ

κ)

1 (-2,1-β,2-2β) (-4.4,1-β,3-3β)

2 (-0.114506,1-β,2-2β) (-0.170442,1-β,3-3β)

3 (-0.011049,1-β,2-2β) (-0.016028,1-β,3-3β)

4 (-0.001102,1-β,2-2β) (-0.001594,1-β,3-3β)

5 (-0.00011,1-β,2-2β) (-0.00017,1-β,3-3β)

6 (-0.000011,1-β,2-2β) (-0.0000159,1-β,3-3β)

7 (-0.0000011,1-β,2-2β) (-0.00000159,1-β,3-3β)
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Table 3: Continuation to Table 2

κ α̃1(ỹ
κ) α̃2(ỹ

κ) µκα̃1(ỹ
κ)

1 (4.0,1-β,2-2β) (19.36,1-β,3-3β) (4,1-β,2-2β)

2 (0.013112,1-β,2-2β) (0.0290505,1-β,3-3β) (0.13112,1-β,2-2β)

3 (0.0001221,1-β,2-2β) (0.0002569,1-β,3-3β) (0.01221,1-β,2-2β)

4 (0.00001214,1-β,2-2β) (0.000002541,1-β,3-3β) (0.001214,1-β,2-2β)

5 (0.000000012,1-β,2-2β) (0.0000000289,1-β,3-3β) (0.00012,1-β,2-2β)

6 (0.00000000012,1-β,2-2β) (0.0000000002581,1-β,3-3β) (0.000012,1-β,2-2β)

7 (0.0000000000012,1-β,1-β) (0.0000000002581,1-β,1-β) (0.0000012,1-β,2-2β)

Table 4: Continuation to Table 3

κ µκα̃2(ỹ
κ) f̃(ỹκ) fµκ(ỹκ)

1 (19.36,1-β,3-3β) (-40.16,2-2β,1-β) (-16.8,2-2β,3-3β)

2 (0.290505,1-β,3-3β) (-8.410969,2-2β,1-β) (-7.989344,2-2β,3-3β)

3 (0.02569,1-β,3-3β) (-7.667433,2-2β,1-β) (-7.629533,2-2β,3-3β)

4 (0.002541,1-β,3-3β) (-7.599343,2-2β,1-β) (-7.595588,2-2β,3-3β)

5 (0.000289,1-β,3-3β) (-7.5926204,2-2β,1-β) (-7.5922104,2-2β,3-3β)

6 (0.00002581,1-β,3-3β) (-7.591815,2-2β,1-β) (-7.5917776,2-2β,3-3β)

7 (0.000002581,1-β,3-3β) (-7.591815,2-2β,1-β) (-7.59156119,2-2β,3-3β)

From the above tables, we see that the exterior penalty fuzzy valued function method con-
verges at the 7th iteration. Hence the optimal solution of the given FNLPP (12) is ỹ1 =
(1.42857, 2 − 2β, 3 − 3β), ỹ2 = (0.85714, 2 − 2β, 3 − 3β) with max f̃(ỹ) = (7.59156119, 2 −
2β, 3 − 3β). That is the optimal solution of the fuzzy nonlinear programming problem (12) is
ỹ1 = (−0.57143 + 2β, 1.42857, 4.42857 − 3β), ỹ2 = (−1.14286 + 2β, 0.85714, 3.85714 − 3β) with
f̃(ỹ) = (5.59156119 + 2β, 7.59156119, 10.5915612− 3β).

6 An application in advertising sector

Himaja and Co. wishes to plan its advertising strategy for which there are two media under
consideration, namely Raja Cable and Srija Channel. Both Raja Cable and Srija Channel
have a reach of potential customers as the square of the number of appearances. The cost
per appearance of one minute is approximately Rs.6, 000 and Rs.9, 000 in Raja cable and Srija
channel respectively. The budget of Himaja is approximately Rs.80, 000 per month. There is an
important requirement that the total reach for the income group under Rs.60, 000 per annum
should not exceed around 3, 000 potential customers. The reach in Raja Cable and Srija Channel
for this income group is approximately 300 and 150 potential customers. How many appearances
of one minute advertisements should Himaja plan so as to maximize the total reach?
Solution: We formulate this as a fuzzy nonlinear programming problem as

max f̃(ỹ) =ỹ21 + ỹ22

subject to 6̃ỹ1 + 9̃ỹ2 � 8̃0

2̃ỹ1 + ỹ2 � 2̃0

ỹ1, ỹ2 � 0̃.

(16)
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We assume that all the decision parameters and the coefficients as triangular fuzzy numbers.
Then the FNLPP (16) becomes

max f̃(ỹ) =(0, 1, 2)ỹ21 + (0, 1, 2)ỹ22

subject to (5, 6, 7)ỹ1 + (8, 9, 10)ỹ2 � (70, 80, 90)

(1, 2, 3)ỹ1 + (0, 1, 2)ỹ2 � (10, 20, 30)

ỹ1, ỹ2 � 0̃.

(17)

This maximization FNLPP (17) is converted into and equivalent minimization FNLPP as

min f̃(ỹ) =− (0, 1, 2)ỹ21 − (0, 1, 2)ỹ22

subject to (5, 6, 7)ỹ1 + (8, 9, 10)ỹ2 − (70, 80, 90) � 0̃

(1, 2, 3)ỹ1 + (0, 1, 2)ỹ2 − (10, 20, 30) � 0̃

ỹ1, ỹ2 � 0̃.

(18)

The parametric form of the FNLPP (18) is given by

min f̃(ỹ) =− (1, 1− β, 1− β)ỹ21 − (1, 1− β, 1− β)ỹ22

subject to g̃(ỹ1) =(6, 1− β, 1− β)ỹ1 + (9, 1− β, 1− β)ỹ2 − (80, 10− 10β, 10− 10β) � 0̃

g̃(ỹ2) =(2, 1− β, 1− β)ỹ1 + (1, 1− β, 1− β)ỹ2 − (20, 10− 10β, 10− 10β) � 0̃

ỹ1, ỹ2 � 0̃, β ∈ [0, 1].

(19)

The FNLPP (19) is transformed in to an unconstrained fuzzy optimization problem as

f̃µκ(ỹ) =− (1, 1− β, 1− β)ỹ21 − (1, 1− β, 1− β)ỹ22

+ µκ((6, 1− β, 1− β)ỹ1 + (9, 1− β, 1− β)ỹ2 − (80, 10− 10β, 10− 10β))2

+ µκ((2, 1− β, 1− β)ỹ1 + (1, 1− β, 1− β)ỹ2 − (20, 10− 10β, 10− 10β))2
(20)

Solving (20), we get

ỹκ ≈
{

(4800, 10− 10β, 10− 10β)µ2κ − (2080, 10− 10β, 10− 10β)µκ
(576, 1− β, 1− β)µ2κ − (488, 1− β, 1− β)µκ + (4, 1− β, 1− β)

,

(314880, 10− 10β, 10− 10β)µ3κ − (489280, 10− 10β, 10− 10β)µ2κ + (5920, 10− 10β, 10− 10β)µκ
(94464, 1− β, 1− β)µ3κ − (81184, 1− β, 1− β)µ2κ + (1632, 1− β, 1− β)µκ − (8, 1− β, 1− β)

}
Let µκ+1 = γµκ. Since γ > 1, starting with γ = 10, µ1 = 10 and ỹ1 = (0, 0) and using a

tolerance of 0.0001 (say), we have the following tables (5),(6),(7),(8).

Table 5: Penalty Iteration Table

κ µκ ỹκ1 ỹκ2
1 1 (8.7095,10-10β,10-10β) (3.0802,10-10β,10-10β)

2 10 (8.3681,10-10β,10-10β) (3.3100,10-10β,10-10β)

3 100 (8.3368,10-10β,10-10β) (3.3310,10-10β,10-10β)

4 1000 (8.3337,10-10β,10-10β) (3.3331,10-10β,10-10β)

5 10000 (8.3334,10-10β,10-10β) (3.3333,10-10β,10-10β)

6 100000 (8.3333,10-10β,10-10β) (3.3333,10-10β,10-10β)
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Table 6: Continuation to Table 5

κ g̃1(ỹ
κ) g̃2(ỹ

κ)

1 (-0.0212,10-10β,10-10β) (0.4992,10-10β,10-10β)

2 (-0.0014,10-10β,10-10β) (0.0462,10-10β,10-10β)

3 (-0.0002,10-10β,10-10β) (0.0046,10-10β,10-10β)

4 (-0.0001,10-10β,10-10β) (0.0005,10-10β,10-10β)

5 (0.0001,10-10β,10-10β) (0.0001,10-10β,10-10β)

6 (-0.0005,10-10β,10-10β) (-0.0001,10-10β,10-10β)

Table 7: Continuation to Table 6

κ α̃1(ỹ
κ) α̃2(ỹ

κ) µκα̃1(ỹ
κ)

1 (0.00045,10-10β,10-10β) (0.249201,10-10β,10-10β) (0.0045,10-10β,10-10β)

2 (0.00000196,10-10β,10-10β) (0.00213444,10-10β,10-10β) (0.000196,10-10β,10-10β)

3 (0.00000004,10-10β,10-10β) (0.00002116,10-10β,10-10β) (0.00004,10-10β,10-10β)

4 (0.00000001,10-10β,10-10β) (0.00000025,10-10β,10-10β) (0.0001,10-10β,10-10β)

5 (0.00000001,10-10β,10-10β) (0.00000001,10-10β,10-10β) (0.001,10-10β,10-10β)

6 (0.00000025,10-10β,10-10β) (0.00000001,10-10β,10-10β) (0.25,10-10β,10-10β)

Table 8: Continuation to Table 7

κ µκα̃2(ỹ
κ) f̃(ỹκ) fµκ(ỹκ)

1 (2.49201,10-10β,10-10β) (-85.3430,10-10β,10-10β) (-82.84649,10-10β,10-10β)

2 (0.213444,10-10β,10-10β) (-80.9812,10-10β,10-10β) (-80.76756,10-10β,10-10β)

3 (0.02116,10-10β,10-10β) (-80.5978,10-10β,10-10β) (-80.57624,10-10β,10-10β)

4 (0.0025,10-10β,10-10β) (-80.5601,10-10β,10-10β) (-80.5575,10-10β,10-10β)

5 (0.001,10-10β,10-10β) (-80.5564,10-10β,10-10β) (-80.5544,10-10β,10-10β)

6 (0.01,10-10β,10-10β) (-80.5548,10-10β,10-10β) (-80.2948,10-10β,10-10β)

From the above tables, we see that the exterior penalty fuzzy valued function method con-
verges at the 6th iteration. Hence the optimal solution for the FNLPP (16) is ỹ1 = (8.3333, 10−
10β, 10− 10β), ỹ2 = (3.3333, 10− 10β, 10− 10β) with max f̃(ỹ) = (80.2948, 10− 10β, 10− 10β).

That is the optimal solution of the fuzzy nonlinear programming problem (16) is ỹ1 =
(−1.6667 + 10β, 8.3333, 18.3333−10β), ỹ2 = (−6.6667 + 10β, 3.3333, 13.3333−10β) with f̃(ỹ) =
(70.2948 + 10β, 80.2948, 90.2948− 10β).

7 Result and Discussion

Table (9) and figure (1) depicts the fuzzy optimal solution of the FNLPP (12) for different values
of β.

Table 9: Optimal solution for different values of β ∈ [0, 1]

β ỹ1 ỹ2 f̃(ỹ)

0 (−0.57143, 1.42857, 4.42857) (−1.14286, 0.85714, 3.85714) (5.59156119, 7.5956119, 10.5915612)

0.25 (−0.07143, 1.42857, 3.67857) (−0.64286, 0.85714, 3.10714) (6.09156119, 7.5956119, 9.8415612)

0.5 (0.42857, 1.42857, 2.92857) (−0.14286, 0.85714, 2.35714) (6.59156119, 7.5956119, 9.0915612)

0.75 (0.92857, 1.42857, 2.17857) (0.35714, 0.85714, 1.60714) (7.09156119, 7.5956119, 8.3415612)

1 (1.42857, 1.42857, 1.42857) (0.85714, 0.85714, 0.85714) (7.59156119, 7.59156119, 7.59156119)
= 1.42857 = 0.85714 =7.59156119

For the same fuzzy nonlinear programming problem (12), Akrami et al. (2016) obtained the
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Figure 1: Optimal solution for different values of β ∈ [0, 1]

fuzzy optimal solution as ỹ1 = (0, 1.429, 11), ỹ2 = (0.6, 0.85714, 3) with f̃(ỹ) = (0.36, 7.597, 511).
We see that the solution obtained by the proposed method is sharper than the solution obtained
by Akrami et al. (2016).

Table (10) and figure (2) depicts the fuzzy optimal solution of the FNLPP (16) for different
values of β.

Table 10: Optimal solution for different values of β ∈ [0, 1]

β ỹ1 ỹ2 f̃(ỹ)

0 (−1.6667, 8.3333, 18.3333) (−6.6667, 3.3333, 13.3333) (70.2948, 80.2948, 90.2948)

0.25 (0.8333, 8.3333, 15.8333) (−4.1667, 3.3333, 10.8333) (72.7948, 80.2948, 87.7948)

0.5 (3.3333, 8.3333, 13.3333) (−1.6667, 3.3333, 8.3333) (75.2948, 80.2948, 85.2948)

0.75 (5.8333, 8.3333, 10.3333) (0.8333, 3.3333, 5.8333) (77.7948, 80.2948, 82.7948)

1 (8.3333, 8.3333, 8.3333) (3.3333, 3.3333, 3.3333) (80.2948, 80.2948, 80.2948)
= 8.3333 = 3.3333 =80.2948

Figure 2: Optimal solution for different values of β ∈ [0, 1]

Himaja and Co. should plan for ỹ1 = (−1.6667+10β, 8.3333, 18.3333−10β), ỹ2 = (−6.6667+
10β, 3.3333, 13.3333 − 10β) appearances of one minute advertisements in Raja Cable and Srija
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Channel respectively to achieve its maximum total reach of f̃(ỹ) = (70.2948+10β, 80.2948, 90.2948−
10β).

From the above tables (9), (10) and figures (1), (2), it can be seen that the proposed method
provides flexibility to the decision maker to choose his /her desired solution by suitably selecting
β.

8 Conclusion

In this paper, we introduced a new approach to solve fuzzy nonlinear programming problems
using triangular fuzzy numbers. These numbers are represented with a location index, left
fuzziness index, and right fuzziness index. We utilize the Exterior penalty fuzzy valued function
method to obtain the fuzzy optimal solution without the need for conversion to crisp nonlinear
programming. A numerical example shows that the proposed method produces a solution with
less vagueness than existing methods. We also discussed an application of FNLPP in advertising
sector. The decision maker can also choose a preferred solution by selecting a suitable value of
β ∈ [0, 1] depending on the situation and their own preferences.
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